
Packers

(5th April 2010)

Ange Albertini
http://corkami.blogspot.com

Creative Commons Attribution 3.0

http://corkami.blogspot.com


Table of contents
3 Models: simple, malware, advanced

4 Categories and Features: compresser, protecter, crypter, bundler, virtualiser, mutater

5 Landscape: Free, Commercial, Malware / Bundlers, Compressors, Virtualizers

6 Detailed features: compression, anti-analysis, anti-debugging, anti-dumping, anti-emulation, bundlers

7 EntryPoints: FSG, UPX (with LZMA), AsPack, PECompact, MEW, Upack

8 Algorithms: aPLib, LZMA, CRC32

Changelog
2010/04/05 +algorithms

2010/04/04 +models

2010/03/29 +entrypoints

2010/03/24 +categories and features, detailed features

2010/02/23 +landscape (first graphic)









detailed packers’ features

compression (used on top of compression algorithms)

section merging merge all sections (just one entry in the section table)
imports imports are stored and loaded with a more compact import table format
imports by hash exports are parsed until it matches a specific hash, instead of a GetProcAddress call
call optimisation turn relative operands of jumps and calls into absolute → better compression
resources compresses resources, avoiding critical ones (main icon, manifest,. . . )

protection

token check presence check to allow the program to run: dongle, CD/DVD, key, file, network...

fingerprinting token is specific to a hardware element: disk/OS/CPU/MAC/...
demo mode inclusion of a demo binary/mode that is executed when token is absent or not enough privileged
integrity check the contents are unmodified with checksum or hash

anti-analysis

overlap jumping after the first byte of an instruction
illusion makes the analyst the something incorrect happened
junk insertion of dummy code between relevant opcodes
jumps insertion of jumps to makes analysis visually harder
polymorphism different but equivalent code → 2 packed files of the same source are different
self generation packer stub generates polymorphic code on the fly → same file executes differently
virtualization virtualizes (part of) packer stub code → harder analysis
stack strings are built and decrypted before use, then discarded → to avoid obvious references
faking add fake code similar to known packers to fool identifcation
thread use several parallel threads to make analysis harder
timing comparing time between two points to detect unusual execution

anti-debugging (and anti-tools, by extension)

detect detect the presence of an attached debugger: IsDebuggerPresent
prevent prevent a debugger to attach to the target itself or stay attached
nuisance make debugger session difficult: BlockInput, slow down...

thread spawn a monitoring thread to detect tampering, breakpoints, . . .
artifacts detects a debugger by its artifact: window title, device driver, exports, ...

limitation prevent the use of a tool via a specific limitation
exploit prevent the use of a tool via a specific vulnerability
backdoor detect or crash a debugger via a specific backdoor
self-debugging debug itself to prevent another debugger to be attached
int1 block interruption 1 → debuggers stop working
fake add code of known packer to fool identification

anti-dumping (prevent making a working executable from a memory image)

tampering erase or corrupt specific file parts to prevent rebuilding (header, packer stub,. . . )
imports add obfuscation between imports calls and APIs (obfuscation, virtualization, stealing, . . . )
on the fly API address is resolved before each use to prevent complete dumping
API hooking alter API behavior: redirect benign API to a critical one → dump not working
inlining copy locally the whole content of API code → no more ’import calls’
relocate relocate API code in separate buffer → calls don’t lead to imported DLLs
byte stealing move the first bytes of the original code elsewhere → harder rebuilding and bypasses breakpoints
page guard blocks of code are encrypted individually, and decrypted temporarily only upon execution
flow flow opcodes are removed and emulated (or decrypted) by the packer during execution → incorrect dump
virtualization virtualizes (part of) original code, API start. . .→ dump not working without VM code

anti-emulation

opcodes using different opcodes sets (FPU, MMX, SSE) to block emulators
undoc use of rare or undocumented opcodes to block non-exhaustive emulators
API unusual APIs are called to block non-exhaustive emulators (anti-virus)
loop extra loops are added to make time-constraint emulators give up

bundlers

drop original file is written to disk then executed
injection original file is injected in existing process → no new file on disk + higher privileges
hooking file handling APIs are modified to make embedded files usable like external ones

Ange Albertini, 2010, cc by 3.0 http://corkami.blogspot.com

1

http://corkami.blogspot.com





